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Abstract : 
rate of exponential die-off from decontamination data. 
with i l l u s t r a t i v e  data are reported which indicate  t ha t  t he  estimation 
of t h i s  rate and i t s  variance are sens i t ive  t o  changes i n  modelling 
assumptions. Since extrapolation using t h i s  estimated rate is used 
i n  the specif icat ion of  planetary quarantine standards, special  
care should be taken i n  the select ion of an appropriate model and 
corresponding estimation procedure fo r  t he  analysis o f  each set of 
decontamination data t o  be used fo r  t h i s  purpose. 

Several models are developed fo r  t h e  estimation of  the  
Calculations 
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1. INTRODUCTION AND SUMMARY 

This report  i s  concerned w i t h  the  development of decontamination models 

based upon the assumption that the  probabili ty,  0 

organism i s  a l ive  at  time t after i n i t i a l  exposure t o  a decontamination pro- 

cedure i s  exponential, t h a t  i s ,  is  of the form 

tha t  a s ingle  micro- t' 

Observations a re  assumed t o  consist  of counts x of t he  number of organisms 

a l ive  per un i t  of tes t  material  and corresponding sampling o r  d i lu t ion  

fract ions,  d. 

which a re  t he  estimated t o t a l  counts that would have resulted i f  complete 

counts had been feasible.  

It i s  common pract ice  t o  report  only the  r a t i o s  y = x/d, 

The y r a t i o s ,  or t h e  x and d values i f  they a re  recorded separately,  

of t he  logarithem t o  the  

Its 

are used t o  estimate 1.1. 

base ten  of  thisest imate  i s  cal led the Devalue by microbiologists. 

importance, and hence the  importance of accurate and precise estimation of 

11, i n  t he  specification. of space quarantine standards i s  emphasized i n  

Section 2. 

models based on (1.1) which enable the  estimation of 1-1 under a var ie ty  of 

assumptions. 

i n  order t o  i l l u s t r a t e  t he  importance of choosing a model and a corresponding 

method of analysis which incorporate the  most r e a l i s t i c  assumptions. 

The negative inverse 

The remainder of the  paper i s  concerned with the development of 

For each model 1-1 i s  estimated using t h e  data of Section 3 

The first model presented i n  Section 4 is the  one assumed, a t  least 

implici t ly ,  when unweighted least squares calculations are applied t o  the  

paired values of t and v E log y. 

the  v values have equal variance, o r  equivalently when the x's  are 

An assumption of t h e  model i s  t h a t  
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similar enough t o  warrant the assumption tha t  they have equal means, t h a t  

the  x values also have equal variance. 

of l~ is  par t icular ly  sensi t ive t d  departures from t h i s  assumption i n  the  

i l l u s t r a t i v e  example. 

The estimation of the  variance 
6 

An a l te rna t ive  model i s  presented i n  Section 5 which u t i l i z e s  both the  

x and d values instead of t h e i r r a t i b s  and which i s  based on independent 

binomial dis t r ibut ions f o r  t he  x counts. For our i l l u s t r a t i v e  data - 

t h i s  model leads t o  a maxinum likelihood estimate of g similar t o  the  

the  least square estimate for  the  f irst  model but t he  estimated variance 

of t h i s  second estimate i s  considerably l e s s .  This  shows the  importance 

of dealing w i t h  the  observed x counts instead of t h e  derived counts, i f  

possible, and of avoiding the  assumptions of constant variance of t he  v 

logarithms when it i s  unrea l i s t ic  as it is  shoxm t o  be fo r  our example. 

A Poisson approximation t o  the  binomial model i s  presented i n  Section 

6. 

these two models. The advantages of t h i s  Poisson model are that  it leads 

t o  simplermaximum likelihood estimation calculations when n i s  not assumed 

known than does the  binomial model and tha t  it i s  more eas i ly  extended 

t o  the s i tua t ion  where n, the  i n i t i a l  loading, varies for  d i f fe ren t  

exposure t i m e s .  T h i s  extension i s  devloped i n  Section 7. For our il- 

lus t r a t ion  t h e  estimate of lA is  quite d i f fe ren t  when n i s  assumed t o  

f luctuate  widely than  when it i s  r e l a t ive ly  s table ,  again i l l u s t r a t i n g  

the importance of making r e a l i s t i c  i n i t i a l  assmptions.  

Similar estimates of v and variances of these estimates a re  c a l c d a t e  for  
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For a l l  but the  binomial model an estimate of p is  obtained both w i t h  

n, or i t s  mean when n i s  variable as i n  Section 7, assumed known and when 

it is  estimated from a l l  the  data. 

is followed of s e t t i ng  n equal t o  yo, t h e  y value based on an i n i t i a l  

count w i t h  t = 0, and t h e  estimate of 1-1 i s  obtained using the  remainder 

of the observations. 

including yo, are used i n  the  same manner t o  esfimate both n and u. The 

two estimates of n and t h e  corresponding estimates of u d i f f e r  consider- 

ably for  each model. 

I n  the former case the  common pract ice  

In  the  lat ter s i t m t i o n  a l l  of  t he  observations, 

This i l l u s t r a t e s  t ha t  n should not be experimentally 

determined and then assumed known unless it i s  well determined, that is ,  

unless repeated i n i t i a l  counts have been made. 

The assumption of exponential die-off as given by (1.1) is  basic  t o  

all of the  models developed herein and i s  an assumption of ten made i n  

analyzing decontamination data. The most common departure i s  for t h e  rate 

of die-off, t h a t  i s ,  the  parameter u ,  t o  change w i t h  exposure t i m e  t. 

One way t o  overcome th i s  d i f f i cu l ty  i s  t o  apply equation (l.l.), and the  

models derived from it, over only part of t he  range of t. 

sapid ear ly  die-off i s  often ignored and models such as those presented 

here are  then used t o  describe the  data when t h e  rate of die-off i s  

more stable. 

For instance, 

Another approach fo r  dealing with departues from assumption (1.1) 

is  t o  assume a d i f fe ren t  d i s t r ibu t ion  of t he  underlying tolerances t o  

exposure of t he  microorganisms being studied. 

thought of as an assumption tha t  the  probabili ty a s ingle  microorganism 

dies  before time t is  1 -l.r . This  i s  the  cumulative tolerance distribu- 

t i o n  of a single-parameter exponential dis t r ibut ion.  

Assumption (1.1) can be 

t 
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assmption (1.1) 5s e q a v d e n t  to assumption of e x ~ n e n t i a l l y  - 

dis t r ibu ted  tolerances i n  t h e  population of microorganisms. The w e l l -  

known probit  and l o g i t  methods of analysis have been a e v a p e d  and exten- 

s ively applied for  t he  more f lex ib le  two-parameter normal and l o g i s t i c  

tolerance distributions,, respectively. Another possible tolerance dis- 

t r ibu t ion  which i s  a d i rec t  extension of (1.1) i s  the  two-parameter gamma 

dis t r ibut ion.  

tolerance dis t r ibut ions for a variety of organisms and types of exposure. 

However, assumption (1.1) i s  widely used and holds i n  many experimental 

s i tua t ions ,  so it i s  appropriate t o  concentrate i n  t h i s  report on models 

derived from t h a t  assumption. 

Research i s  cer ta in ly  needed t o  determine appropriate 

2. 1 ~ p o r n ~ 1 1 c ~  TO SPACE QUARANTINE 

Decontamination models a r e  of general i n t e re s t  i n  microbiology. 

They are of par t icu lar  i n t e re s t  i n  the  development of procedures t o  achieve 

a high probabili ty of s t e r i l i z a t i o n ,  fo r  instance, i n  the  food and medical 

supply industries.  

i s  t h e  s t e r i l i z a t i o n  of interplanetary spacecraft. 

quarantine agreements have been reached which 

of contaminating Vars must be l e s s  than 

r i s  of the  order of magnitude of three. 

ants  on a spacecraft before f i n a l  decontamination can be made l e s s  than 

lo*, where 6 i s  no l a rge r  than eight. 

t h e  number of viable organisms assumed t o  be present a t  the  beginning of 

decontaminttion, equal t o  10' and t o  determine the  exposure time, say 

However, t h e  main concern which motivated t h i s  work 

International planetary 

i iqly that the  probabili ty 

for a s ine le  f l i gh t ,  where 

The number of viable contamin- 

0' So it i s  pertinent t o  set n 



5 

needed to.reduce the  probabili ty tha t  the  corresgonding x is  zero. to  tr 9 

l-l.O-r. For the models i n  t h i s  paFer, 5% i s  appropriate t o  set t = (r + 6 ) 6 ,  
r 

where 

can be defined from (1.1) as t h e  value of t for which 0, = 0.1. h 

estimate of 6, usually cal led a D-value, can be used t o  form an estimate 

n 

t of t given by r r 

The simplicity of (2.2) explains the pract ice  of microbiologists of 

thinking i n  terms of t he  estimator D of 6 instead of i n  terms of an estimator 

of 1.1. Moreover, the  use of (2.2) can be thought of as  p lo t t ing  the  

expected value of n evaluated at  6 = D verses t on semi-logarithmic 

graph paper and then extrapolating l i nea r ly  t o  find t he  value of t for 

which t h i s  l i n e  reaches the  s t e r i l i z a t i o n  probabi l i ty  standard, The extent 

of t he  extrapolation required, which is specif ied by t h e  mult ipl ier  

(r + 4) i n  (2.2) and which we have indicated could be as la rge  as eleven, 

means t h a t  it i s  imperative for s t e r i l i z a t i o n  applications t o  estimate 6 ,  

or  a l te rna t ive ly  1-1, as  well as possible. Once an estimate of u ,  denoted 

by 6 , is  calculated,  t he  corresponding D-value can be computed by replacing 

1-( by 1-1 i n  (2.1). 
A 

3. ILLUSTRATIVE DATA 

The parameter 1-( w i l l  be estimated using each of the  models presented 

in t h i s  paper for the data presented i n  Table 1. The t and y values l i s t e d  
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there  have been taken from a graph presented by Bruch (1965) i n  a dis- 

cussion of dry-heat s t e r i l i z a t i o n  at  a Spacecraft S t e r i l i za t ion  Technology 

Conference. 

d i lu t ing  t h e  t e s t  material fo r  each t value so tha t  a count of the  order 

of magnitude of 300 o r  less could be obtained, making such a count and 

expanding tha t  count by division by t h e  d i lu t ion  fract ion.  Counts and 

d i lu t ion  fract ions which could have l ed  t o  the  values pg-aphed by Bqch 

have been entered i n  the x and d columns, respectively,  fo r  i l l u s t r a t i v e  

purposes. The m column l is ts  values o f  rn = 

t he  i n i t i a l  expanded count recorded by Bruch before exposure of h i s  t e s t  

organisms t o  dry heat. The f i r s t  column of t r i a l  numbers i n  Table 1 

indexes the  exposure times used i n  the  experiment. 

It has been assumed that  t he  y values were determined by 

5 f o r  n s e t  equal t o  6.3 x LO ~ 
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TABLE 1 

HUMBER (X )  OF' BACILLUS SUBTILIS VAR. NIGER SPORES 
RECOVERED PER STRIP VERSUS EXPOSURE T I ? E  (t) IN HOURS 
AT 120' c TEMFERATURE IB AIR AT ATI\'IOSPHERIC PRESSURE 

T r i a l  
Hmber t Y d X E 

0 

1 

5 

6 

7 

8 

9 

0 

0.167 

0.500 

0.750 

1.0 

1.5 

2.0 

3.0 

4.0 

5.0 

5 

5 

5 
5 

5 

4 

6.3 x 10 

4.6 x 10 

3.4 x 1 0  

2.5 x 10 

1.6 x i o  

3.4 x 1 0  

3.4 l o 3  

1.4 x l o 2  

3.4 x lo1 
0 2.0 x 10 

lo-2 

1 

1 

1 

63 

46 
34 

25 

161 

336 

34 

136 

34 

2 

1 6.3 x 10 
1 

1 
6.3 x 10 

6.3 x 10 
1 

2 

6.3 x 10 

6.3 x 10 
3 6.3 x 10 

6.3 lo3  
5 

5 

6.3 x 10 

6.3 x 10 

5 6.3 x 10 
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4. A LEAST SQUARES MODEL 

A simple model can be obtained by noting from (1.1) t h a t  l o g  8 

where n i s  the  number of organisms 

= t log  1-1. t 

Since y/n i s  an estimate of e 

exposed i n i t i a l l y ,  v =  log  y s a t i s f i e s ,  at  lease  approximately, 

t ,  

v = log n + t log  p 4 (4.1) 

The i n i t i a l  loading n i s  assumed t o  be t h e  same fo r  each t .  

i s  assumed t h a t  t he  variance of v i s  the  same for  each t. This l a t t e r  

assumption allovs the  simple unweighted l e a s t  squares technique t o  be 

applied t o  (v , t )  pa i r s  t o  estimate the slope log  1-1 and, i f  it i s  not 

assumed known, the  intercept  log n. 

inverse of t h e  D -  value, 

Moreover, it 

The former estimate i s  the  negative 

The assumption of equal va r i ab i l i t y  for  t he  Y'S i s  not en t i r e ly  

unreasonable. Each x i s  of t h e  same order of magnitude, say y; Assume  

i n  addition t h a t  each x i s  a sample from the  same population with mean y .  

Also assume t h a t  each x value has variance 'y. 

assumption i s  reasonable since it holds for the  Poisson dis t r ibut ion.  

With these assumptions, t he  mean and variance of y would be y/d and 

Y/d 

a constant independent of d and t. 

!&is l a t t e r  

2 and t h e  variance of v = log  y would be approximately equal t o  l/y, 

The l e a s t  squares estimate of log 1-1 is  

with u = ( t  - g) if n i s  unknown and with u = t otherwise, where t" 

denotes the  sample mean of t he  t 's.  
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In the  former case, t he  least squares estimate of l og  n i s  

The variance of t he  l e a s t  squares estimate of log  1-1 i s  

(4.3) 

where V(v) i s  the  variance of v and 'is estimated by summing the 

squared deviations of t he  v's f r o m t h e i r  estimated values calculated by 

subst i tut ing l e a s t  squares e*ba.tes in to  the  r igh t  s ide  of equation (4.1). 

This sum of squares i s  then divided by the  number of ent r ies  i n  t h e  sum 

less the  number of l e a s t  squares estimates calculated. After use of 

(4.4), t he  estimated variance of = exp( r'. o , ~  p) i s  coqJuted 

Using a l l  the  data  i n  Table 1 i n  equations (4.2) and (4.3) leads t o  

5 5 the  estimates 

and using equation (4.2) excluding yo yields  p = 0.082. 

variances of p for  these two s i tua t ions ,  calculated from (4.4) and (4.51, 

are  0.941 x 10 and 0.590 x 1 0  respectively. These i l l u s t r a t i v e  calcu- 

l a t ions  show t h a t  qu i te  d i f fe ren t  estimates of p s  and the  variance of t h i s  

estimate, can be obtained when n i s  assumed known and equal t o  y as 

opposed t o  when n i s  estimated from a l l  t he  data. This difference i s  

par t icu lar ly  noteworthy i n  view of the  extrapolation based on 1-1 t o  be made 

i n  the  space quarantine se t t i ng  as described i n  Section 2. 

= 0.070 and = 7.9 x 1 0  . Sett ing n= yo = 6.3 x 10 
6 

The estimated 
* 

-4 -4 

0 



10 

In t h e  calculation of t he  estimated 

of v u t i l i z i n g  deviations of the v. from 
1 

variances of G, 
t h e i r  estimates 

and equalled 0.507 and 0.505 according t o  whether o r  not 

estimated variances 

were calculated 

n was set equal 

t o  yo. 

j u s t i f i ca t ion  f o r  assuming tha t  the v ' s  have common variance, by l/z, 
where 5 i s  the sample mean of the  x ' s  and an e s t i m t e  of y ,  then w e  would 

obtain 0.011 i n  both cases as o u r e s t i x a t e  of t he  varianc'e 

of V. The d ispar i ty  between these estimates indicates t ha t  the 

assumption ofconstant variance fo r  v = log y i s  unreasonable for OUT 

i l l u s t r a t i v e  data and that .none OF these variance estimates i s  very meaningful 

since each is  calculated assuming a common variance for  all of the  v's. 

However,one of the first, and la rger ,  p a i r  w o d d  be used, i f  my, since t h a t  p a r  

of variances i s  based on observed deviations of the v g s  from t h e i r  estimates 

If instead the  variance of v were estimated, i n  accord w i t h  our 

and not j u s t  on modelling assumptions and because t h e  x values a re  not 

usually avai lable  when l e a s t  squares calculations a re  used on the  y's. 

However, t h i s  comparison i l l u s t r a t e s  the  fac t  that  t he  assumption of equal. 

variance for  t h e  v ' s  upon which commonly used unweighted l e a s t  squares 

calculations are based can not be taken f o r  granted. 

5. A BINOPEAL MODEL 

The reasonableness of t he  model given by (4.1) depends on the  assumption 

t h a t  each x observation has the  same mean. "his assumption i s  of ten 

regarded as inadequate as it has been shown t o  be for our i l l u s t r a t i o n  

even though the  x 's  a re  usually within a power of t en  of each other. 

A more reasonable assumption, but one which leads t o  unequal variances 

for  the  v ' s  and t o  a s l i g h t l y  more complicated model and estimation 
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equations, i s  t h a t  x follows a binomial d i s t r ibu t ion  w i t h  each of dn 

organisms observed at t i m e  t independently having probabi l i ty  1-1 

survival. 

function f ( x )  f o r  x, where 

t of 

This leads t o  a model specif ied by the  binomial probabili ty 

f ( x )  = ( d n ) ( l l t ) x ( l  -11 t ) dn-x , x = 0,1,. .., dn, 
X (5.11 

and where (&) is the binomial coeff ic ient  representing the nuniber o f  ways 

of se lec t ing  x organisms from a t o t a l  available of dn. 

X 

The model given by equation (5.1) with both n and each of the  sampling 

fractions assumed known i s  of'ten encountered i n  bioassay and epidemiology 

as documented by Cornell and Speckman (1967) who reference, i l l u s t r a t e  

and compare several methods fo r  estimating 1.1. 

m a x i m u m  l ikel ihood procedure which when applied t o  the  data i n  Table 1 

w i t h  n = yo y ie lds  1.1 = 0.078, which i s  very close t o  t he  comparable 

least squares estimate of 0.082 given i n  Section 4. 

maximizing the  jo in t  l ikel ihood function which equals t he  products 

of t he  right-sides of equation (5.1) formed using a l l  of  the combinations 

of  d, t and x values observed i n  the  experiment. 

(asymptotic) variance formula for  p 3  which i s  also given by Peto, leads 

t o  an estimated variance o f  j of 0.167 x 

smaller than the corresponding variance estimate c i t ed  i n  Section 4 

and i l l u s t r a t e s ,  a t  least when n is  assumed known, that  taking i n t o  

account t h a t  the x variables do not all have the  same mean and using 

the  actual x observations and corresponding d i lu t ion  factors  d instead 

o f  j u s t  t h e i r  y r a t io s  makes  more ef f ic ien t  estimation of  p possible. 

The main drawback t o  the use of  t h i s  binomial model instead 

Pet0 (1353) works out the 

h 

This method en ta i l s  

The approximate 
h 

This is  considerably 
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of the  l e a s t  squares model of Section 4 i s  the  d i f f i c u l t  computations 

required t o  estimate both n and 1-1 using all t he  data. T h i s  d i f f i cu l ty  

i s  overcome t o  some extent i n  the  next section. 

6 .  A POISSON MODEL 

Since et i s  usually s m a l l  r e l a t ive  t o  nd f o r  t > because o f  t he  

exponential die-off assumed i n  equation (l.l), t h e  binomial probabili ty 

model given by (5.1) can a l te rna t ive ly  be approximated using the  Poisson 

probabili ty function 

(6.1) -A x f (x)  = e x /x:,x = 0 ,  I,..., 

where X = ndet = ndut i s  the  mean of x given t fo r  t h e  d is t r ibu t ion  speci- 

f i ed  by (6.1) as w e l l  as by (5.1). 

calculations than the  binomial model i n  Section 5, par t icu lar ly  when n 

as well as FC i s  t o  be estimated. 

This model leads t o  eas ie r  estimation 

The model given by (6.1) has been introduced by W i l l i a m s  (1961) 

i n  the  context of a genetic study fo r  equally spaced t values. He develops 

tables  t o  assist i n  the maximum likelihood estimation of 1-1 and studies 

the  significance of departures from t he  model. 

t o  the  model depicted by (6.1), t he  di lut ion factors  d would have t o  be 

the  same f o r  each t. 

To apply h is  work d i r ec t ly  

A formula which can be solved i t e r a t ive ly  for  a maximum l ikelihood 

estimate of p i n  model (6.1) for  any s e t  of exposure times, thus avoiding 

the  r e s t r i c t ions  i n  W i l l i a m s '  model, i s  
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^ti 
n 1 ditip - T = 0 

where T = 1 t . x .  and n i s  assumed t o  be kno5m. When n i s  not known and 
1 1  

X 5 1 x jo in t  maximum likelihood estimates of p and n are given by i9 

A method of solving such equations i t e r a t ive ly  which also leads t o  variance 

estimates i s  discussed, fo r  instance, by Rao (1952, pages 165-172). 

For the  data i n  Table 1 with n = yo, equation (6.2) yields  

5 t 
A A2 
p = 0.077. 

results a re  very close t o  those obtained with the  binomial model i n  Section 

5. When n i s  not assumed t o  equal y equations (6.3) and (6.4) l ead  t o  

p = 0.056 and 

of the  estimate 

which can a r i s e  between 

count and an estimate based upon a l l  the  data. 

need fo r  several  observations a t  t = 0 i f  n i s  t o  be experimentally 

determined and then assumed known i n  fur ther  calculations used t o  estimate 

P o  

Its estimated variance i s  v / m i t i 2 i  = 0.163 x 10 . These 

o s  
6 

p t o  t h e  value taken for n and a l so  the  descrepmcies 

A 

= 1.435 x 10 . These results indicate  the sens i t i v i ty  
A 

an estimate of n based on a single i n i t i a l  

This emphasizes again the  

7. A NOEEL W I T H  VARIABLE LOADINGS 

The Poisson model i n  Section 6 forms a base for eas i ly  allowing for 

the  var ia t ion i n  the  i n i t i a l  loading n over the  tubes prepared f o r  different  

exposure t i m e s ,  Since n i s  large. i n  spacecraft decontamination applica- 

t ions ,  it i s  reasonable t o  approximate i t s  d is t r ibu t ion  by t h a t  of' a 
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continuous random variable and since n can not be negative, t he  gamma 

dis t r ibu t ion  i s  the  n a t u r a l  one t o  use. 

with t h e  mean and variance of n equal t o  a/B and a/B2,  respectively,  i s  

Its probabi l i ty  density function, 

The gamma d is t r ibu t ion  i s  f lex ib le ,  assuming an exponential form when 

a = 1 and moving through stages of decreasing . sl;;ewness tocards nomakity 

as a increases. 

Multipling the  r i g h t  s ides  of  equations (6.1) and (7.1) leads t o  

t 
f(x,n)  = ea(dpt)Xe-n(B+dp )nX+"-l/[r(a) X! 1. 

Integrating out n y ie lds  a negative binomial probabili ty function for x given by 

(7.2) , x = 0 ,  1, ...;.a, B ' 0. 

t 
The mean of x i s  equal t o  adv /@, which i s  ju s t  the  mean A f o r  the  binomial 

and Poisson models of Sections 5 and 6 w i t h  n replaced by i t s  mean a/@. 

The parameter 1-I has been estimated using (7.2) w i t h  the  mean a/B 

of n s e t  equal t o  yo, the  assumed known and fixed value of n used i n  

calculations fo r  previous models. The pa rme te r  has been s e t  successively 

equal t o  I, 1/2, and 0.4 x 10 

are  equal, as when n has a Poisson dis t r ibut ion.  

the  variance of n twice i t s  mean, representing s l iqh t ly  more va r i ab i l i t y  

than when n has a Poisson dis t r ibut ion.  

of n i s  much la rger  than i t s  mean and t h i s  i l l u s t r a t e s  the  use of t h i s  model 

when there  i s  extremely diffuse information about n. 

s i tua t ions  the  maximum likelihood estimates of U are 0.078 f o r  B = 1 

-5 . When B = 1 the  variance and mean of n 

Taking B = 1 / 2  makes 

When 8 = 0.4 x lom5 the  variance 

For these three 
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h 

and 1/2,as compared t o  0.077 for  the  corresponding Poisson model 

6, and 0.089 for  f3 = 0.4 x This i l l u s t r a t e s  t h a t  allowing 

i n  Section 

f o r  

va r i ab i l i t y  i n  n does not a f fec t  t h e  estiEate 

i s  re la t ive lv  small but does when i t - i s  l a v e ,  &nd hence should be taken 

in to  account i n  t h i s  instance through the  use of model (7.2) as opposed 

t o  those given by (5.1)  and (6.1). 

of p when t h i s  va r i ab i l i t y  

The parameters 01 and $ as well as p i n  (7.2) can be regarded as 

unknown and estimated from the  data by t h e  maximum l ikelihood procedure, 

although t h e  calculations are formidable. For our i l l u s t r a t i o n ,  t he  

resul tant  estimates of p , a and 8 are  0.064, 4.10 and 0.273 x 

respectively. The l a t t e r  two estimates lead t o  15.02 x 1 0  and 55.01 x 10 

as the  estimated mean and variance of n, 

should not be emphasized too much because the  l ikelihood contour i s  

re la t ive ly  f l a t  around i t s  m a x i m u m  point, t h a t  is, t h e  estimates of p, 

a 

sample markedly. However, these estimates do indicate  tha t  for t h i s  

example it i s  not very reasonable t o  assume tha t  n i s  the  same fo r  each 

exposure time i n t h e  Poisson model i n  Section 6 or i n  t he  binomial model 

i n  Section 5 which it approximates. This calculation, l i k e  the  first one 

i n  t h i s  section, a lso i l l u s t r a t e s  t he  sens i t i v i ty  of t he  estimate of 

t o  assumptions made about n i n  developing the  model upon which the  

5 25 

The point values of these estimates 

and f3 could be varied qui t  a b i t  without reducing the  l ikelihood of the  

estimation calculations a re  based. 
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